ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Sarah R. Suffield, William A. Perkins, Ben J. Jensen, Brady D. Hanson, Steven B. Ross
Nuclear Technology | Volume 211 | Number 2 | February 2025 | Pages 241-257
Research Article | doi.org/10.1080/00295450.2024.2324213
Articles are hosted by Taylor and Francis Online.
Deposition models are being developed with the commercial computational fluid dynamics software STAR-CCM+ to evaluate particulate deposition on spent nuclear fuel (SNF) canisters. The primary particulate of concern is chloride salts, which are dispersed in the atmosphere and then deposited onto the canisters. During dry storage, the primary degradation process is likely to be chloride-induced stress corrosion cracking (CISCC) at the heat-affected zones of the canister welds. It is known that stainless steel canisters are susceptible to CISCC; however, the rate of chloride deposition onto the canisters is poorly known, based on sparse field data from a small number of sites.
This paper describes work looking at various approaches to modeling turbulence, such as Reynolds-averaged Navier Stokes (RANS) and large eddy simulation (LES), and its impact on particle flow and deposition within a ventilated SNF storage system. The deposition rate is determined for a vertical canister system and a horizontal canister system. LES has the potential to simulate turbulent flows more accurately versus RANS, but is much more computationally expensive. A k-omega version of the RANS turbulence model was used for this study.
The computational efficient RANS steady-state model predicted a similar canister deposition result as the LES simulation for a vertical canister storage system. For a horizontal storage system, the RANS steady-state model predicted more particles depositing on the canister than the LES simulation, providing a conservative estimation for particle deposition. A wall correction factor was added to the RANS model to dampen the turbulence fluctuation normal to a surface that left undamped, leads to the RANS model overpredicting deposition along a surface for smaller particles.
This work was done to further development of deposition models that could be used to plan and inform SNF canister aging management programs with predictive models for the timing and occurrence of canister CISCC. This work is part of a larger effort tasked with understanding the likelihood of canister degradation due to CISCC. These models are still under development, and testing is needed for validation. However, these models are being presented now to demonstrate to canister vendors, utilities, regulators, and stakeholders the value of this type of modeling.