ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Zeyun Wu, Christian Pochron, Mihai (Mike) G. M. Pop, Neal Mann
Nuclear Technology | Volume 211 | Number 2 | February 2025 | Pages 225-240
Research Article | doi.org/10.1080/00295450.2024.2323267
Articles are hosted by Taylor and Francis Online.
The Molten Uranium Breeder Reactor (MUBR) is a radically new reactor concept with a mixed-energy spectrum. MUBR is fueled with molten uranium metal in large-diameter fuel tubes and is cooled by circulating molten uranium fuel through a heat exchanger. The reactor has heavy water as moderator, and the reactivity of the reactor is primarily controlled by the voiding effect of the moderator through an innovative control cavity structure design. Because the MUBR design is vastly different from most existing fission reactors, neutronics analysis must be performed for many different combinations of design parameters to identify viable and optimum design configurations. To facilitate the neutronics analysis, a proprietary program called MUBR6gen is being developed to provide a pipeline tool to expedite the process. MUBR6gen employs two well-established neutronics codes, i.e., MCNP and SCALE, to perform standard neutronics calculations for MUBR by automating input preparation and output processing. In addition, MUBR6gen ensures consistency of the MCNP and SCALE inputs and compares the outputs of the two codes to warrant the simulation results. Augmented with MUBR6gen, standard neutronics analysis was carried out on a small-scale MUBR design, which serves as a model problem in the paper. The neutronics performance characteristics of the model reactor were obtained and discussed in a code-to-code pattern. An overall very good agreement between the results of the two neutronics codes was established. Based on the success of the model problem analysis, further neutronics analysis using MUBR6gen was extended for a set of MUBR variant designs. Meaningful and promising fuel cycle analysis results for the 10 different designs were achieved and discussed. These results are used to identify the best MUBR candidates in terms of fuel lifetime and utilization efficiency for future applications.