ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Zeyun Wu, Christian Pochron, Mihai (Mike) G. M. Pop, Neal Mann
Nuclear Technology | Volume 211 | Number 2 | February 2025 | Pages 225-240
Research Article | doi.org/10.1080/00295450.2024.2323267
Articles are hosted by Taylor and Francis Online.
The Molten Uranium Breeder Reactor (MUBR) is a radically new reactor concept with a mixed-energy spectrum. MUBR is fueled with molten uranium metal in large-diameter fuel tubes and is cooled by circulating molten uranium fuel through a heat exchanger. The reactor has heavy water as moderator, and the reactivity of the reactor is primarily controlled by the voiding effect of the moderator through an innovative control cavity structure design. Because the MUBR design is vastly different from most existing fission reactors, neutronics analysis must be performed for many different combinations of design parameters to identify viable and optimum design configurations. To facilitate the neutronics analysis, a proprietary program called MUBR6gen is being developed to provide a pipeline tool to expedite the process. MUBR6gen employs two well-established neutronics codes, i.e., MCNP and SCALE, to perform standard neutronics calculations for MUBR by automating input preparation and output processing. In addition, MUBR6gen ensures consistency of the MCNP and SCALE inputs and compares the outputs of the two codes to warrant the simulation results. Augmented with MUBR6gen, standard neutronics analysis was carried out on a small-scale MUBR design, which serves as a model problem in the paper. The neutronics performance characteristics of the model reactor were obtained and discussed in a code-to-code pattern. An overall very good agreement between the results of the two neutronics codes was established. Based on the success of the model problem analysis, further neutronics analysis using MUBR6gen was extended for a set of MUBR variant designs. Meaningful and promising fuel cycle analysis results for the 10 different designs were achieved and discussed. These results are used to identify the best MUBR candidates in terms of fuel lifetime and utilization efficiency for future applications.