ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tetsuya Mouri, Taira Hazama, Hiroki Katagiri, Kazuya Ohgama
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 143-160
Research Article | doi.org/10.1080/00295450.2024.2323228
Articles are hosted by Taylor and Francis Online.
The reliability and usefulness of the reaction rate distribution data measured in the prototype fast breeder reactor Monju were examined through a comparison with a calculation using JENDL-4.0, mainly focusing on shielding regions around the reactor core. The reaction rates of 238U (n,f) and 58Ni (n,p) sensitive to high-energy neutrons were all judged reliable. The calculation-to-experiment values were slightly worse in the shielding regions; however, those for the 58Ni (n,p) reaction rates were improved by employing JEFF-3.3 instead of JENDL-4.0. A different tendency was observed between the two reactions, probably due to the 238U (n,f) cross section in the energy range of around 700 eV. The reaction rates of 235U (n,f), 239Pu (n,f), 238U (n,γ), and 197Au (n,γ) sensitive to the lower-energy neutrons were mostly judged reliable. The data in the lower axial shielding region are less reliable but may be acceptable for the shielding calculation.