ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Hangbok Choi, John Bolin, Oscar Gutierrez, Radu Curiac, Mohammad Alavi, Matthew Virgen, Ed Chin, James Beaver, Pascal Brocheny, Geoffrey Beausoleil, Abdellatif M. Yacout, Sal Rodriguez, Michael Corradini, Daejong Kim, Steven L. Krahn, Eric Thornsbury
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 79-92
Research Article | doi.org/10.1080/00295450.2024.2319925
Articles are hosted by Taylor and Francis Online.
The Fast Modular Reactor (FMR) is a 100-MW(thermal) gas-cooled fast reactor being developed by General Atomics Electromagnetic System with the goal of developing a FMR for flexible and dispatchable power to the U.S. electricity market in the mid-2030s. The conceptual design aims to develop and verify simplified design features. These include an inert helium gas coolant, pellet-loaded fuel rods, installations with air cooling as ultimate heat sink, and small and passive heat removal systems. The goal is to ensure the development of a safe, maintainable, cost-effective, and distributed nuclear energy-generating station.
The baseline technologies selected to achieve this goal are a helium coolant that is an inert gas with no chemical reaction with structural components, not activated, single phase, enabling high-temperature operation and a high thermal efficiency Brayton cycle; conventional uranium dioxide (UO2) fuel, which is the most widely used and well-known fuel material, capable of high burnup (100 MWd/kg) and a long fuel life; and silicon carbide composite (SiGA®) cladding and internal structures that are chemically inert in the helium environment, exceptionally radiation tolerant, and being derisked by accident tolerant fuel technology development.
The reactor was specifically designed with passive safety features, including high-temperature in-core materials and a reactor vessel cooling system consisting of cooling panels of naturally circulating water. The passive safety of the core was confirmed for the depressurized loss-of–forced cooling accident, which showed the peak cladding temperature at ~1600°C during the transient, which is below the current design limit of 1800°C. The conceptual design of the FMR has been conducted for the reactor system, vessel system, generator and turbomachine, instrumentation and control, residual heat removal system, plant service system, and containment, as well as pre-application licensing documents.