ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC finishes draft supplemental EIS for Clinch River SMR site
The Nuclear Regulatory Commission and the U.S. Army Corps of Engineers have completed a draft supplemental environmental impact statement for a small modular reactor at the Tennessee Valley Authority’s Clinch River nuclear site in Oak Ridge, Tenn.
Hongchao Sun, Yiren Lian, Guoqiang Li, Lei Chen, Dongyuan Meng, Shutang Sun, Dajie Zhuang, Jiangang Zhang
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 32-38
Research Article | doi.org/10.1080/00295450.2024.2312723
Articles are hosted by Taylor and Francis Online.
A fire accident is one typical postulated accident in a nuclear fuel cycling facility. Safety-related data on a combustible fire are necessary to evaluate the safety of nuclear fuel cycling facilities under fire accident conditions quantitatively. Accurate and reliable data should be obtained by performing some demonstration tests.
This study deals with the ignition and combustion characteristics of solvent involved at a nuclear fuel cycling facility and the fire behavior during a solvent fire. Small-scale and large-scale tests were conducted at the China Institute for Radiation Protection. The minimum ignition energy of the solvent under different temperatures was obtained. The test data were used to judge the possibility that the organic solvent ignited by a spark. Parameters such as combustion rate, smoke gas, aerosol release of solvent combustion, temperature distribution, and pressure change in the solvent fire cell were also obtained. The test results can be used as conservative estimates of the amount of aerosol release during a solvent fire. The experimental data also can be used to develop preventive and mitigation measures for solvent fire accidents. This paper puts forward information based on the experimental data and the recent international study.