ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Hongchao Sun, Yiren Lian, Guoqiang Li, Lei Chen, Dongyuan Meng, Shutang Sun, Dajie Zhuang, Jiangang Zhang
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 32-38
Research Article | doi.org/10.1080/00295450.2024.2312723
Articles are hosted by Taylor and Francis Online.
A fire accident is one typical postulated accident in a nuclear fuel cycling facility. Safety-related data on a combustible fire are necessary to evaluate the safety of nuclear fuel cycling facilities under fire accident conditions quantitatively. Accurate and reliable data should be obtained by performing some demonstration tests.
This study deals with the ignition and combustion characteristics of solvent involved at a nuclear fuel cycling facility and the fire behavior during a solvent fire. Small-scale and large-scale tests were conducted at the China Institute for Radiation Protection. The minimum ignition energy of the solvent under different temperatures was obtained. The test data were used to judge the possibility that the organic solvent ignited by a spark. Parameters such as combustion rate, smoke gas, aerosol release of solvent combustion, temperature distribution, and pressure change in the solvent fire cell were also obtained. The test results can be used as conservative estimates of the amount of aerosol release during a solvent fire. The experimental data also can be used to develop preventive and mitigation measures for solvent fire accidents. This paper puts forward information based on the experimental data and the recent international study.