ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Biao Zhang, Jinjia Cao, Shuang Lin, Yingming Song
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 1-12
Research Article | doi.org/10.1080/00295450.2024.2312026
Articles are hosted by Taylor and Francis Online.
The inverse distance weighting (IDW) interpolation algorithm is used to reconstruct the γ radiation field. The traditional IDW interpolation algorithm is improved. The power exponent of distance P in the IDW for each interpolation point is not fixed and varies from one point to the other point. A fitting expression of P is obtained, which is a function of the coordinates of each point and can minimize the interpolation error when the number of sampling points is specified. Afterward, the improved algorithm is used to reconstruct a γ radiation field of a single source, and the theoretic results are compared with the results from Geant4, yielding an average relative error of 7.50%. The interpolated results from the experimental measurements align well with the actual data, with an average relative error of only 0.12%. The P derived from the interpolated experimental measurement data shows an error of 2.0% compared to the power exponent obtained from the Geant4 data interpolation. Then we set up a double-source γ radiation scene experiment and measured the count rate data at the grid points. At the same time, the experiment scene was simulated by Geant4. The improved IDW algorithm could not reconstruct the double-source γ radiation field well, thus further improvement is needed.