ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ark O. Ifeanyi, Daniel Dos Santos, Abhinav Saxena, Jamie Coble
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2387-2403
Research Article | doi.org/10.1080/00295450.2024.2323260
Articles are hosted by Taylor and Francis Online.
Control rods and elements manage the power distribution in nuclear reactors through the motion of banks of rods distributed throughout the core. These positional changes are achieved through the actuation of fine motion control rod drive (FMCRD) mechanisms. In the BWRX-300 design by GE-Hitachi, this mechanism is electrically driven by a servomotor that allows for high-precision control of power outputs. Under operational transients, such as load-following, accurate and precise operation of these servomotors is necessary over long periods of time, so they are key maintenance targets to maintain availability and operational flexibility. Swiftly and precisely identifying faults in the drive mechanisms will support predictive maintenance and reduced costs. This paper used three different types of simulated faults to test the fault detectability of principal component analysis (PCA) when considering the simulated operations of banks of control rods and their associated servomotors. These faults were stator short-circuit faults, ball screw jam faults, and ball screw wear faults. Torque and position were monitored in the simulation. The position signal was insufficient to detect mechanical faults. Torque signals for each servomotor in the bank of rods undergoing multiple position demand changes were projected to a reduced dimensional space via PCA. Q and T2 statistics were employed for anomaly detection. Using this approach, all faults were detected, and the anomalies were isolated to the faulty FMCRD mechanism.