ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
Ark O. Ifeanyi, Daniel Dos Santos, Abhinav Saxena, Jamie Coble
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2387-2403
Research Article | doi.org/10.1080/00295450.2024.2323260
Articles are hosted by Taylor and Francis Online.
Control rods and elements manage the power distribution in nuclear reactors through the motion of banks of rods distributed throughout the core. These positional changes are achieved through the actuation of fine motion control rod drive (FMCRD) mechanisms. In the BWRX-300 design by GE-Hitachi, this mechanism is electrically driven by a servomotor that allows for high-precision control of power outputs. Under operational transients, such as load-following, accurate and precise operation of these servomotors is necessary over long periods of time, so they are key maintenance targets to maintain availability and operational flexibility. Swiftly and precisely identifying faults in the drive mechanisms will support predictive maintenance and reduced costs. This paper used three different types of simulated faults to test the fault detectability of principal component analysis (PCA) when considering the simulated operations of banks of control rods and their associated servomotors. These faults were stator short-circuit faults, ball screw jam faults, and ball screw wear faults. Torque and position were monitored in the simulation. The position signal was insufficient to detect mechanical faults. Torque signals for each servomotor in the bank of rods undergoing multiple position demand changes were projected to a reduced dimensional space via PCA. Q and T2 statistics were employed for anomaly detection. Using this approach, all faults were detected, and the anomalies were isolated to the faulty FMCRD mechanism.