ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Ezgi Gursel, Bhavya Reddy, Katy Daniels, Jamie Baalis Coble, Mahboubeh Madadi, Vivek Agarwal, Ronald Boring, Vaibhav Yadav, Anahita Khojandi
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2299-2311
Research Article | doi.org/10.1080/00295450.2024.2338507
Articles are hosted by Taylor and Francis Online.
In nuclear power plants (NPPs), anomalies arising from sensors or human errors (HEs) can undermine the performance and reliability of plant operations. Anomaly detection models can be employed to detect sensor errors and HEs. Additionally, physics-informed machine learning models can utilize the known physics of the system, as described by mathematical equations, to ensure that sensor values are consistent with physical laws. Hence, we propose SPIDARman: System-level Physics-Informed Detection of Anomalies in Reactor Collected Data Considering Human Errors, a holistic physics-informed anomaly detection approach based on generative adversarial networks (GANs) to detect anomalies in both automatically collected sensor data and manually collected surveillance data. We test our approach on data collected from a flow loop testbed, showcasing its potential to detect anomalies. Results demonstrate that the proposed model performs better than the baseline GAN-based models in detecting sensor and surveillance anomalies, suggesting the potential of physics-informed anomaly detection GAN models in NPPs.