ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Shekhar Kumar
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2236-2243
Note | doi.org/10.1080/00295450.2024.2309069
Articles are hosted by Taylor and Francis Online.
Several empirical equations were available in the literature for density equation for tri-n-butyl phosphate (TBP)–bearing mixed organic solutions used in the PUREX/UREX process; however, all most all of the equations were found to have a limited range and a limited number of solutes to be handled. In this work, a robust density equation is proposed in a dimensionally consistent manner. In the proposed equation, TBP is also considered as a solute, rendering the proposed equation valid over a full range of TBP concentrations. The highlights of this technical note include1. Density equation for mixed organic solutions, containing TBP, n-dodecane, and nitrates of heavy metals, is proposed in a dimensionally consistent manner.2. TBP is also considered as a solute, rendering proposed equation valid over 0% to 100% of TBP concentrations.3. The proposed equation is valid for uranium concentrations 0 to 120 g/L in organic phase.4. With a small loss of precision, the same can be used for PUREX solvent loaded with Pu(IV).
1. Density equation for mixed organic solutions, containing TBP, n-dodecane, and nitrates of heavy metals, is proposed in a dimensionally consistent manner.
2. TBP is also considered as a solute, rendering proposed equation valid over 0% to 100% of TBP concentrations.
3. The proposed equation is valid for uranium concentrations 0 to 120 g/L in organic phase.
4. With a small loss of precision, the same can be used for PUREX solvent loaded with Pu(IV).