ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
INL researchers use LEDs to shed light on next-gen reactors
At Idaho National Laboratory, researchers have built a bridge between computer models and the lab’s Microreactor Applications Research Validation and Evaluation (MARVEL) microreactor.
Tony Crawford, an INL researcher and MARVEL’s reactivity control system lead, designed a phone booth–sized surrogate nuclear reactor called ViBRANT, or Visual Benign Reactor as Analog for Nuclear Testing, which uses light instead of neutrons to show a “nuclear” reaction.
Ryan J. Hoover, Kenji Shimada
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2204-2214
Research Article | doi.org/10.1080/00295450.2024.2312022
Articles are hosted by Taylor and Francis Online.
Transient mitigation for nuclear power plants is essential for safe operation. The fourth industrial revolution brings with it the potential for data-based predictive maintenance and identifying remaining time of life for degrading components. An improvement to predictive maintenance would be to address continued operation with faulty components between the time of identification and eventual replacement. The ability to perform data analysis and contemporary digital control systems allows for data-driven control system actions. A methodology is developed herein to train a neural network that can map desired system performance and current plant component capability to control system settings. Simulations of plant transients were recorded and used to train a neural network. This neural network was tested with different target performance goals. The results show that the trained neural network recommended settings that affected the control system response so as to meet the target performance goals.