ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Ryan J. Hoover, Kenji Shimada
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2204-2214
Research Article | doi.org/10.1080/00295450.2024.2312022
Articles are hosted by Taylor and Francis Online.
Transient mitigation for nuclear power plants is essential for safe operation. The fourth industrial revolution brings with it the potential for data-based predictive maintenance and identifying remaining time of life for degrading components. An improvement to predictive maintenance would be to address continued operation with faulty components between the time of identification and eventual replacement. The ability to perform data analysis and contemporary digital control systems allows for data-driven control system actions. A methodology is developed herein to train a neural network that can map desired system performance and current plant component capability to control system settings. Simulations of plant transients were recorded and used to train a neural network. This neural network was tested with different target performance goals. The results show that the trained neural network recommended settings that affected the control system response so as to meet the target performance goals.