ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Ryan J. Hoover, Kenji Shimada
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2204-2214
Research Article | doi.org/10.1080/00295450.2024.2312022
Articles are hosted by Taylor and Francis Online.
Transient mitigation for nuclear power plants is essential for safe operation. The fourth industrial revolution brings with it the potential for data-based predictive maintenance and identifying remaining time of life for degrading components. An improvement to predictive maintenance would be to address continued operation with faulty components between the time of identification and eventual replacement. The ability to perform data analysis and contemporary digital control systems allows for data-driven control system actions. A methodology is developed herein to train a neural network that can map desired system performance and current plant component capability to control system settings. Simulations of plant transients were recorded and used to train a neural network. This neural network was tested with different target performance goals. The results show that the trained neural network recommended settings that affected the control system response so as to meet the target performance goals.