ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Nora Nassiri-Mofakham, Mojtaba Kakaei
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2151-2158
Research Article | doi.org/10.1080/00295450.2024.2311977
Articles are hosted by Taylor and Francis Online.
Waste from resource extraction industries contains uranium and thorium decay chain radionuclides. One important radiological impact of these wastes is the release of radon into the atmosphere. Therefore, the prediction/evaluation of radon flux and the effectiveness of different covers are the major elements in radiation protection, long-term safety aspects, and the modeling of radon release into the environment for a final assessment of radiological impacts and required remediation actions. A measurement system has been designed based on the transient-diffusion method to evaluate radon exhalation by the short-time accumulation technique. The validity of the laboratory model to quickly estimate the radon release from soils, the diffusion coefficient, and the effect of covers was investigated. From the results obtained from the experimental model, it was observed that after a 0.5-m(1-m) cover layer, the radon flux reduction factor increases from 1.3(2.1) for sand to about 2(3) for clay. The results show that the effectiveness of the cover layer studied is 3, which is similar to theoretical and experimental results in uranium tailings ponds.