ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Nora Nassiri-Mofakham, Mojtaba Kakaei
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2151-2158
Research Article | doi.org/10.1080/00295450.2024.2311977
Articles are hosted by Taylor and Francis Online.
Waste from resource extraction industries contains uranium and thorium decay chain radionuclides. One important radiological impact of these wastes is the release of radon into the atmosphere. Therefore, the prediction/evaluation of radon flux and the effectiveness of different covers are the major elements in radiation protection, long-term safety aspects, and the modeling of radon release into the environment for a final assessment of radiological impacts and required remediation actions. A measurement system has been designed based on the transient-diffusion method to evaluate radon exhalation by the short-time accumulation technique. The validity of the laboratory model to quickly estimate the radon release from soils, the diffusion coefficient, and the effect of covers was investigated. From the results obtained from the experimental model, it was observed that after a 0.5-m(1-m) cover layer, the radon flux reduction factor increases from 1.3(2.1) for sand to about 2(3) for clay. The results show that the effectiveness of the cover layer studied is 3, which is similar to theoretical and experimental results in uranium tailings ponds.