ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Nora Nassiri-Mofakham, Mojtaba Kakaei
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2151-2158
Research Article | doi.org/10.1080/00295450.2024.2311977
Articles are hosted by Taylor and Francis Online.
Waste from resource extraction industries contains uranium and thorium decay chain radionuclides. One important radiological impact of these wastes is the release of radon into the atmosphere. Therefore, the prediction/evaluation of radon flux and the effectiveness of different covers are the major elements in radiation protection, long-term safety aspects, and the modeling of radon release into the environment for a final assessment of radiological impacts and required remediation actions. A measurement system has been designed based on the transient-diffusion method to evaluate radon exhalation by the short-time accumulation technique. The validity of the laboratory model to quickly estimate the radon release from soils, the diffusion coefficient, and the effect of covers was investigated. From the results obtained from the experimental model, it was observed that after a 0.5-m(1-m) cover layer, the radon flux reduction factor increases from 1.3(2.1) for sand to about 2(3) for clay. The results show that the effectiveness of the cover layer studied is 3, which is similar to theoretical and experimental results in uranium tailings ponds.