ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Yong Wang, Lichuang Liang, Jun Tian, Dongchuan Su, Hui Li, Naibin Jiang
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2115-2132
Research Article | doi.org/10.1080/00295450.2024.2310902
Articles are hosted by Taylor and Francis Online.
The heat pipe reactor represents a promising high-temperature microreactor design comprising heat pipes, fuel rods, and monoliths. Prolonged operation at elevated temperatures leads to an obvious thermal creep and thermal stress within the monolith. The monolith may have structural failure due to creep damage and fatigue damage caused by temperature fatigue load. This paper presents an analysis of the creep fatigue damage in the monolith of the MegaPower heat pipe reactor using the American Society of Mechanical Engineers (ASME), Boiler and Pressure Vessel Code Section III, Division 5 (BPVC Sec. III, Div. 5) inelastic design-by-analysis rules.
The research findings demonstrate pronounced stress relaxation in the monolith caused by thermal creep, resulting in a redistribution of thermal stress. The region experiencing peak thermal stress within the monolith transitions from the thinnest web between the fuel rods to the edge of the monolith after 50 000 h of operation at full power. Thermal creep results in a 40.5% decrease in peak thermal stress and a 0.023% increase in the displacement amplitude of the monolith. The creep fatigue damage in the monolith at full power for 50 cycles, each lasting 1000 h, adheres to the design rule limitation of the ASME BPVC. The damage is primarily concentrated in the thinnest web region at the edge of the monolith, predominantly attributed to creep damage. The creep fatigue damage check in the monolith should carefully consider the effect of stress relaxation.