ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Musa Moussaoui, Wade Marcum
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2091-2114
Research Article | doi.org/10.1080/00295450.2024.2309601
Articles are hosted by Taylor and Francis Online.
In the most challenging nuclear power plant accidents, transient critical heat flux (CHF) is a primary phenomenon that drives peak cladding temperature, and ultimately, fuel failure. It has not yet been determined whether the use of steady-state CHF methods can accurately predict transient CHF under the conditions of a blowdown due to a loss-of-coolant accident.
There are limited comprehensive experiments at prototypic conditions. To address this deficiency, a quality separate-effects test facility was built to simulate an electrically heated rod under blowdown conditions. Testing reached full pressurized water reactor thermal-hydraulic conditions. With scaled break sizes as large as a double-end cold leg break, CHF was repeatedly measured with depressurization rates ranging from 7 to 17 MPa s−1.
These measurements at prototypic conditions acquired in a controlled methodology are novel to the body of knowledge. Several steady-state CHF methods and heater models were evaluated using RELAP5-3D simulations and the Dakota framework. The results showed that many steady-state CHF methods performed inadequately, but that recently developed wide-ranged, look-up table methods had the most acceptable results. Additionally, the results showed no significant correlation between prediction accuracy and the depressurization rates tested.