ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Musa Moussaoui, Wade Marcum
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2091-2114
Research Article | doi.org/10.1080/00295450.2024.2309601
Articles are hosted by Taylor and Francis Online.
In the most challenging nuclear power plant accidents, transient critical heat flux (CHF) is a primary phenomenon that drives peak cladding temperature, and ultimately, fuel failure. It has not yet been determined whether the use of steady-state CHF methods can accurately predict transient CHF under the conditions of a blowdown due to a loss-of-coolant accident.
There are limited comprehensive experiments at prototypic conditions. To address this deficiency, a quality separate-effects test facility was built to simulate an electrically heated rod under blowdown conditions. Testing reached full pressurized water reactor thermal-hydraulic conditions. With scaled break sizes as large as a double-end cold leg break, CHF was repeatedly measured with depressurization rates ranging from 7 to 17 MPa s−1.
These measurements at prototypic conditions acquired in a controlled methodology are novel to the body of knowledge. Several steady-state CHF methods and heater models were evaluated using RELAP5-3D simulations and the Dakota framework. The results showed that many steady-state CHF methods performed inadequately, but that recently developed wide-ranged, look-up table methods had the most acceptable results. Additionally, the results showed no significant correlation between prediction accuracy and the depressurization rates tested.