ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a roaring start in Atlanta, Ga., Tuesday morning with an opening plenary that was a live highlight reel discussing the latest industry achievements.
Starting with a lively promo video that left the audience amped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
Musa Moussaoui, Wade Marcum
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2091-2114
Research Article | doi.org/10.1080/00295450.2024.2309601
Articles are hosted by Taylor and Francis Online.
In the most challenging nuclear power plant accidents, transient critical heat flux (CHF) is a primary phenomenon that drives peak cladding temperature, and ultimately, fuel failure. It has not yet been determined whether the use of steady-state CHF methods can accurately predict transient CHF under the conditions of a blowdown due to a loss-of-coolant accident.
There are limited comprehensive experiments at prototypic conditions. To address this deficiency, a quality separate-effects test facility was built to simulate an electrically heated rod under blowdown conditions. Testing reached full pressurized water reactor thermal-hydraulic conditions. With scaled break sizes as large as a double-end cold leg break, CHF was repeatedly measured with depressurization rates ranging from 7 to 17 MPa s−1.
These measurements at prototypic conditions acquired in a controlled methodology are novel to the body of knowledge. Several steady-state CHF methods and heater models were evaluated using RELAP5-3D simulations and the Dakota framework. The results showed that many steady-state CHF methods performed inadequately, but that recently developed wide-ranged, look-up table methods had the most acceptable results. Additionally, the results showed no significant correlation between prediction accuracy and the depressurization rates tested.