ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
INL researchers use LEDs to shed light on next-gen reactors
At Idaho National Laboratory, researchers have built a bridge between computer models and the lab’s Microreactor Applications Research Validation and Evaluation (MARVEL) microreactor.
Tony Crawford, an INL researcher and MARVEL’s reactivity control system lead, designed a phone booth–sized surrogate nuclear reactor called ViBRANT, or Visual Benign Reactor as Analog for Nuclear Testing, which uses light instead of neutrons to show a “nuclear” reaction.
Satish Kumar Dhurandhar, S. L. Sinha, Shashi Kant Verma
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2050-2073
Research Article | doi.org/10.1080/00295450.2024.2309080
Articles are hosted by Taylor and Francis Online.
The utilization of a grid spacer with vane is a significant component within reactor fuel channels. The presence of the vane has a notable impact on the mixing of flow and the enhancement of heat transfer within subchannels. The purpose of this work was to perform a numerical analysis of the effects of the vane deflection angle on the flow-thermal characteristics in a fuel rod assembly.
In the current analysis, a square array consisting of a 5 × 5 rod bundle was utilized. The pitch-to-rod diameter ratio was set to 1.33, while the blockage ratio of the grid spacer was determined to be 0.16. A relative study was made for flow-thermal characteristics with four different vane deflection angles, such as 21 deg, 25 deg, 29 deg, and 33 deg. Analyses were made for a fluid pressure of 15.5 MPa, an inlet temperature of 583 K, and a velocity of 4.74 m/s.
The present study investigated the Shear Stress Transport (SST) k-ω and Renormalization Group (RNG) k-ε turbulence models to analyze flow phenomena and thermal performance. The numerical results were validated through experimental data and also compared with correlations proposed by researchers. The analysis of the results was carried out using various methods, including the examination of data curves and streamlines, as well as vector and contour plots. The results indicate that a higher deflection angle leads to a greater reduction in temperature at the grid spacer. The swirl ratio was observed to be maximum close downstream to the grid spacer, and the persistence of the swirl ratio in the downstream can enhance the performance of departure of nucleate boiling. The vane on the grid spacer with a higher deflection angle enhances the coefficient of heat transfer remarkably close to the downstream grid spacer.