ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
Satish Kumar Dhurandhar, S. L. Sinha, Shashi Kant Verma
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2050-2073
Research Article | doi.org/10.1080/00295450.2024.2309080
Articles are hosted by Taylor and Francis Online.
The utilization of a grid spacer with vane is a significant component within reactor fuel channels. The presence of the vane has a notable impact on the mixing of flow and the enhancement of heat transfer within subchannels. The purpose of this work was to perform a numerical analysis of the effects of the vane deflection angle on the flow-thermal characteristics in a fuel rod assembly.
In the current analysis, a square array consisting of a 5 × 5 rod bundle was utilized. The pitch-to-rod diameter ratio was set to 1.33, while the blockage ratio of the grid spacer was determined to be 0.16. A relative study was made for flow-thermal characteristics with four different vane deflection angles, such as 21 deg, 25 deg, 29 deg, and 33 deg. Analyses were made for a fluid pressure of 15.5 MPa, an inlet temperature of 583 K, and a velocity of 4.74 m/s.
The present study investigated the Shear Stress Transport (SST) k-ω and Renormalization Group (RNG) k-ε turbulence models to analyze flow phenomena and thermal performance. The numerical results were validated through experimental data and also compared with correlations proposed by researchers. The analysis of the results was carried out using various methods, including the examination of data curves and streamlines, as well as vector and contour plots. The results indicate that a higher deflection angle leads to a greater reduction in temperature at the grid spacer. The swirl ratio was observed to be maximum close downstream to the grid spacer, and the persistence of the swirl ratio in the downstream can enhance the performance of departure of nucleate boiling. The vane on the grid spacer with a higher deflection angle enhances the coefficient of heat transfer remarkably close to the downstream grid spacer.