ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yu-Min Chen, Te-Chuan Wang, Min Lee
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2017-2037
Research Article | doi.org/10.1080/00295450.2024.2306693
Articles are hosted by Taylor and Francis Online.
The Boiling Water Reactor Owner’s Group released Emergency Procedure Guidelines and Severe Accident Guidelines Revision 4 (EPG/SAG Rev. 4) in 2018. The major improvement to EPG/SAG Rev. 4 was Contingency 1 (Alternate Level/ Pressure Control). Contingency 1 coordinates the reactor pressure vessel (RPV) water level and RPV pressure control action to prolong the availability of steam-driven injections and optimize the transfer to motor-driven systems.
In this study, the effectiveness of the EPG/SAG Rev. 4 Contingency 1 strategy was compared with those of EPG/SAG Revision 2 Contingency 1 and Specific Major Incident Guidelines (SMI) using the Modular Accident Analysis Program, Version 5 (MAAP5). SMI was developed by the Taiwan Power Company to mitigate a Fukushima-like accident. The surrogate plant that analyzed is the Kuosheng Nuclear Power Plant (NPP). The Kuosheng NPP is BWR-6 Mark-III containment. MAAP5 is an integral severe accident analysis program that simulates the responses of a light water reactor power plant during a severe accident. This program has been used extensively for probabilistic risk assessments and for verification and validation of mitigation actions specified in severe accident management guidelines.
The simulation scenarios were extended loss of alternative-current power and loss of ultimate heat sink. The low-capacity, motor-driven portable pump was the only available system for RPV injection in the first hour of the accident. In this time period, the RPV water level and pressure were controlled by reactor core isolation cooling and safety relief valves. After this study, the strategy of EPG/SAG Rev. 4 Contingency 1 was successfully validated, and the effectiveness of minimum pre-depressurization RPV water level and the low-capacity, motor-driven portable pump were also demonstrated in this study.