ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Naoki Yoshida, Takuya Ohno, Yuki Amano, Ryoichiro Yoshida, Hitoshi Abe, Yuichi Yamane
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1999-2007
Note | doi.org/10.1080/00295450.2024.2306688
Articles are hosted by Taylor and Francis Online.
A malfunction of the cooling system of high-level liquid waste (HLLW) and the failure of countermeasures may lead to the evaporation to dryness due to the loss of cooling functions (EDLCF) of the HLLW. In the EDLCF, ruthenium (Ru) can be released at a greater fraction to the initial amount than the other elements in HLLW by forming gaseous Ru. It is important to identify the chemical form of the released gaseous Ru to achieve a comprehensive understanding of the events impacting the source term assessment of Ru in this accident, such as particle formation, gas absorption, and deposition on migration pathways.
In this study, we observed the ultraviolet/visible spectroscopy of the off-gas generated during the heating of a HLLW simulant. Employing a program that allows for the separation and quantification of known components within the spectrum [ruthenium tetroxide (RuO4), nitrogen dioxide, and nitric acid], we attempted to analyze the composition of gaseous Ru within the generated off-gas. Our findings revealed RuO4 as the main component of the gaseous Ru in the off-gas after comparing the total amount of released Ru and the RuO4 released amount obtained via spectroscopic analysis.