ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Naoki Yoshida, Takuya Ohno, Yuki Amano, Ryoichiro Yoshida, Hitoshi Abe, Yuichi Yamane
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1999-2007
Note | doi.org/10.1080/00295450.2024.2306688
Articles are hosted by Taylor and Francis Online.
A malfunction of the cooling system of high-level liquid waste (HLLW) and the failure of countermeasures may lead to the evaporation to dryness due to the loss of cooling functions (EDLCF) of the HLLW. In the EDLCF, ruthenium (Ru) can be released at a greater fraction to the initial amount than the other elements in HLLW by forming gaseous Ru. It is important to identify the chemical form of the released gaseous Ru to achieve a comprehensive understanding of the events impacting the source term assessment of Ru in this accident, such as particle formation, gas absorption, and deposition on migration pathways.
In this study, we observed the ultraviolet/visible spectroscopy of the off-gas generated during the heating of a HLLW simulant. Employing a program that allows for the separation and quantification of known components within the spectrum [ruthenium tetroxide (RuO4), nitrogen dioxide, and nitric acid], we attempted to analyze the composition of gaseous Ru within the generated off-gas. Our findings revealed RuO4 as the main component of the gaseous Ru in the off-gas after comparing the total amount of released Ru and the RuO4 released amount obtained via spectroscopic analysis.