ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Liftoff report lifts the lid on cost and risk in push to nth-of-a-kind reactors
The Pathways to Commercial Liftoff: Advanced Nuclear report that was released in March 2023 by the Department of Energy called for five to 10 signed reactor contracts for at least one reactor design by 2025. Now, 18 months have passed, and despite the word “resurgence” in media reports on the U.S. nuclear power industry, 2025 is fast approaching with no contracts signed.
Felix Pino, Jessica C. Delgado, Matteo Polo, Erica Fanchini, Anna Selva, Joana Minga, Gianmarco Torilla, Lodovico Ratti, Sandra Moretto
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1975-1984
Research Article | doi.org/10.1080/00295450.2024.2304993
Articles are hosted by Taylor and Francis Online.
This paper describes the characterization of a fast neutron facility located at Legnaro National Laboratories’ Van de Graaff CN accelerator. The neutron flux is produced by the Be() reactions, generated by a beryllium thick target bombarded with 5-MeV protons. An iterative unfolding algorithm combined with a pulse shape discrimination technique were used to obtain the energy distributions of the emitted neutrons at different angles and to compute the absolute neutron flux as a function of the proton current. With a proton current of 180 nA and a distance of 5 cm from the emission point, a maximum neutron flux of 2.6 10 cm−2 s−1 (15%) was obtained.
The gamma-ray component made up around 32% of the total radiation field. The measurements were taken with a Stilbene scintillation detector, therefore a comprehensive study of the detector was also performed, including energy calibration, determination of the proton light output function, and intrinsic neutron detection efficiency. Based on the results and the capabilities of the Stilbene detector, it can be concluded that this detector is suitable for fast neutron flux characterization. It enables quick measurements and real-time monitoring of the neutron field.