ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
Markus Preston, Erik Branger, Sophie Grape, Olena Khotiaintseva
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1952-1974
Research Article | doi.org/10.1080/00295450.2024.2304931
Articles are hosted by Taylor and Francis Online.
According to a recently proposed nuclear safeguards technique, monitoring the power-normalized, ex-core neutron detection rate over time could be used to detect undeclared changes to the fissile composition of a reactor core. In this study, Monte Carlo simulations have been used to verify some of the underlying assumptions of this technique and the possibilities of using it to detect undeclared fuel substitutions during the first 2-year cycle of a light water small modular reactor. Depletion calculations and neutron transport simulations were used to study the changes in the power-normalized neutron leakage rate through the core barrel upon fuel substitutions and whether these changes are fully explained by changes in the core fissile composition. Several substitution scenarios have been studied, where partially depleted fuel assemblies were substituted with fresh fuel assemblies after 1 year of irradiation.
The modeled substitution scenarios, which included substituting up to 4 out of 37 fuel assemblies in the core at a time, resulted in changes in of up to 3.5% depending on which fuel assemblies were substituted. The results indicate that the ex-core neutron signatures are not only sensitive to core-averaged nuclide densities, fission cross sections, and neutron flux, but also the spatial distributions of these and other parameters throughout the core. Effects such as these could mean that monitoring the core fissile composition with the proposed technique might be more complex than previously suggested.