ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Markus Preston, Erik Branger, Sophie Grape, Olena Khotiaintseva
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1952-1974
Research Article | doi.org/10.1080/00295450.2024.2304931
Articles are hosted by Taylor and Francis Online.
According to a recently proposed nuclear safeguards technique, monitoring the power-normalized, ex-core neutron detection rate over time could be used to detect undeclared changes to the fissile composition of a reactor core. In this study, Monte Carlo simulations have been used to verify some of the underlying assumptions of this technique and the possibilities of using it to detect undeclared fuel substitutions during the first 2-year cycle of a light water small modular reactor. Depletion calculations and neutron transport simulations were used to study the changes in the power-normalized neutron leakage rate through the core barrel upon fuel substitutions and whether these changes are fully explained by changes in the core fissile composition. Several substitution scenarios have been studied, where partially depleted fuel assemblies were substituted with fresh fuel assemblies after 1 year of irradiation.
The modeled substitution scenarios, which included substituting up to 4 out of 37 fuel assemblies in the core at a time, resulted in changes in of up to 3.5% depending on which fuel assemblies were substituted. The results indicate that the ex-core neutron signatures are not only sensitive to core-averaged nuclide densities, fission cross sections, and neutron flux, but also the spatial distributions of these and other parameters throughout the core. Effects such as these could mean that monitoring the core fissile composition with the proposed technique might be more complex than previously suggested.