ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
INL researchers use LEDs to shed light on next-gen reactors
At Idaho National Laboratory, researchers have built a bridge between computer models and the lab’s Microreactor Applications Research Validation and Evaluation (MARVEL) microreactor.
Tony Crawford, an INL researcher and MARVEL’s reactivity control system lead, designed a phone booth–sized surrogate nuclear reactor called ViBRANT, or Visual Benign Reactor as Analog for Nuclear Testing, which uses light instead of neutrons to show a “nuclear” reaction.
Markus Preston, Erik Branger, Sophie Grape, Olena Khotiaintseva
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1952-1974
Research Article | doi.org/10.1080/00295450.2024.2304931
Articles are hosted by Taylor and Francis Online.
According to a recently proposed nuclear safeguards technique, monitoring the power-normalized, ex-core neutron detection rate over time could be used to detect undeclared changes to the fissile composition of a reactor core. In this study, Monte Carlo simulations have been used to verify some of the underlying assumptions of this technique and the possibilities of using it to detect undeclared fuel substitutions during the first 2-year cycle of a light water small modular reactor. Depletion calculations and neutron transport simulations were used to study the changes in the power-normalized neutron leakage rate through the core barrel upon fuel substitutions and whether these changes are fully explained by changes in the core fissile composition. Several substitution scenarios have been studied, where partially depleted fuel assemblies were substituted with fresh fuel assemblies after 1 year of irradiation.
The modeled substitution scenarios, which included substituting up to 4 out of 37 fuel assemblies in the core at a time, resulted in changes in of up to 3.5% depending on which fuel assemblies were substituted. The results indicate that the ex-core neutron signatures are not only sensitive to core-averaged nuclide densities, fission cross sections, and neutron flux, but also the spatial distributions of these and other parameters throughout the core. Effects such as these could mean that monitoring the core fissile composition with the proposed technique might be more complex than previously suggested.