ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
INL researchers use LEDs to shed light on next-gen reactors
At Idaho National Laboratory, researchers have built a bridge between computer models and the lab’s Microreactor Applications Research Validation and Evaluation (MARVEL) microreactor.
Tony Crawford, an INL researcher and MARVEL’s reactivity control system lead, designed a phone booth–sized surrogate nuclear reactor called ViBRANT, or Visual Benign Reactor as Analog for Nuclear Testing, which uses light instead of neutrons to show a “nuclear” reaction.
Weiping Zhang, Yiheng Chen, Wenrui Cheng, Liping Guo, FengFeng Luo
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1925-1931
Research Article | doi.org/10.1080/00295450.2024.2304914
Articles are hosted by Taylor and Francis Online.
Vanadium is a typical low-activation metal and has the advantages of lower neutron irradiation activation, better mechanical properties at high temperature, and higher compatibility with the liquid lithium blanket. However, the effect of helium on the formation of irradiation defects in vanadium has not been adequately explored at low temperatures (below 723 K). Helium ion irradiations of 18 keV up to 0.54 displacement per atom were employed to study the temperature-dependent behavior of irradiation defects in vanadium at 523, 623, and 723 K. Helium bubbles were observed in vanadium under irradiations at all temperatures, but no dislocation loops were observed. With the increase of irradiation temperature, the average size of helium bubbles and swelling increased, and the density of helium bubbles decreased. It is noteworthy that the average size of helium bubbles and swelling increased significantly when the irradiation temperature increased from 623 to 723 K. In addition, pentagonal helium bubbles, helium bubbles nucleated at the grain boundary, and combinations between helium bubbles were observed.