ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Liftoff report lifts the lid on cost and risk in push to nth-of-a-kind reactors
The Pathways to Commercial Liftoff: Advanced Nuclear report that was released in March 2023 by the Department of Energy called for five to 10 signed reactor contracts for at least one reactor design by 2025. Now, 18 months have passed, and despite the word “resurgence” in media reports on the U.S. nuclear power industry, 2025 is fast approaching with no contracts signed.
Jamal-Eddin Assaf, Zuheir Ahmad
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1914-1924
Research Article | doi.org/10.1080/00295450.2024.2304913
Articles are hosted by Taylor and Francis Online.
A computer program was developed using the MATLAB programming language to simulate the electronics readout for a radiation detector system. The function of each stage of this system is described by a mathematical model in the Laplace domain. The electrical signals have been shown and analyzed at two main outputs of the system. They are described according to their related circuit parameters. The obtained results of the simulation can be used to achieve a best design of the concerned circuits and to provide appropriate details about the system operation. Validation of the simulated signals by comparison with available experimental results has been achieved.