ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jamal-Eddin Assaf, Zuheir Ahmad
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1914-1924
Research Article | doi.org/10.1080/00295450.2024.2304913
Articles are hosted by Taylor and Francis Online.
A computer program was developed using the MATLAB programming language to simulate the electronics readout for a radiation detector system. The function of each stage of this system is described by a mathematical model in the Laplace domain. The electrical signals have been shown and analyzed at two main outputs of the system. They are described according to their related circuit parameters. The obtained results of the simulation can be used to achieve a best design of the concerned circuits and to provide appropriate details about the system operation. Validation of the simulated signals by comparison with available experimental results has been achieved.