ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Shiping Wei, Jin Wang, Zhixin Ma, Ming Jin, Chunjing Li, Yuan Hu
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1901-1913
Research Article | doi.org/10.1080/00295450.2024.2304911
Articles are hosted by Taylor and Francis Online.
A 100-W radioisotope thermoelectric generator (RTG) is by far the most suitable power supply for long-term deep space exploration where solar power would not be feasible. Understanding the thermal performance and electrical performance of the RTG under operational conditions is paramount for its nominal and safety performance during the space mission. In this paper, modeling and experimental studies on the thermal behavior and electrical performance of the 100-W RTG have been conducted. The RTG uses high conversion efficiency skutterudite-based thermoelectric convertor (TEC) arrays thermally coupled with a radioisotope heat unit (RHU) to generate electricity. A comprehensive finite element model and an electrical heating prototype of the 100-W RTG have been built to assess the performance of the RTG designs. Critical temperature, generated power, and energy conversion efficiency were evaluated. The simulation results show that the maximum output power of the RTG can reach about 120 W(electric); the temperature of the hot end of the TECs is about 853 K, and the temperature of the cold end is about 473 K, making a temperature difference of about 380 K. The RTG prototype with Bi2Te3 TECs generated about 60 W(electric) of electrical power in the first experimental research stage. These research results have significant reference for extension of the RTG prototype to the actual power source of the RHU and allow for future research and development improvements of the 100-W RTG.