ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The D&D of SM-1A
With the recent mobilization at the site of the former SM-1A nuclear power plant at Fort Greely, Alaska, the Radiological Health Physics Regional Center of Expertise, located at the U.S. Army Corps of Engineers’ Baltimore District, began its work toward the decommissioning and dismantlement of its third nuclear power plant, this time located just 175 miles south of the Arctic Circle.
Sung-Jae Yi, Jin-Hwa Yang, Byong Guk Jeon, Hwang Bae, Hyun-Sik Park, Kwang-Won Seul
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1888-1900
Research Article | doi.org/10.1080/00295450.2024.2304909
Articles are hosted by Taylor and Francis Online.
A thermosiphon is a heat transfer device that utilizes the phase change of a liquid and has a single closed-loop shape in a gravity-dominant field. This can be expressed as a single-step thermosiphon because boiling and condensation occur once per cycle. In contrast, the multistep thermosiphon, introduced for the first time in the field of thermal engineering in this study, is a new heat transfer mechanism in which boiling and condensation occur several times per cycle in a single loop with multiple channels. The new mechanism has a superior heat transfer rate compared to the existing single-step thermosiphon, and the operating pressure of the loop can be lowered. However, as the heat transfer rate increases, the circulation flow in the channel tends to pulsate. This thermohydraulic characteristic was confirmed through theoretical and computational analyses of a two-step thermosiphon.
In this study, an improved concept of an asymmetric two-step thermosiphon was developed that can be applied to heat exchanger design by eliminating pulsating flow while maintaining the advantages of a two-step thermosiphon. The newly proposed heat transfer mechanism, termed the multistep thermosiphon, can be effectively used in the design of heat exchangers in industrial fields. In particular, if the asymmetric two-step thermosiphon is applied to the design of small nuclear reactor containments currently being developed in several countries, there are several advantages associated with the reduction of the containment volume and design pressure.