ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Atsuhiko Terada, Ryuji Nagaishi
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1871-1887
Research Article | doi.org/10.1080/00295450.2024.2302747
Articles are hosted by Taylor and Francis Online.
In order to understand the dispersion of hydrogen (H2) leaked in packed beds of nonporous/porous particles in a partially open space practically, the dispersion of H2 in the particle layers of glass beads and soil was analytically studied using a computational fluid dynamics code to be compared with the experiments and to elucidate the effects of the particle layer. The packed beds in the partially open space can be considered as a basic model for all processes of transfer, treatment, storage, and disposal of radioactive materials containing fuel debris in the decommissioning of nuclear facilities after a severe accident.
The H2 flowing out from a single leak point in the particle layer of nonporous glass beads was affected by buoyancy around the leak point and diffused directly above the leak point in an elliptical shape faster than in the horizontal direction. After that, when it reached the air layer in the head space above the particle layer, the H2 spread horizontally, formed a large concentration gradient near the boundary between the particle layer and the air layer, and further diffused in the air layer until the H2 concentration became about 1/3 or less of the concentration near the surface of the particle layer. When the particle diameters were 512 μm and 1200 μm, this tendency was more pronounced when the porosity was the same and the particle diameter was smaller.
The calculations largely reproduced the experimental concentration distributions. When the particle layer was porous decomposed granite soil, the diffusion behavior of H2 in the particle layer proceeded in the same manner as in the case of the glass beads. However, a large concentration gradient was formed near the boundary between the particle layer and the air layer, and then H2 diffused in the air layer until the H2 concentration became below the lower combustion limit. It was suggested through sensitivity analysis that the air permeability coefficient had a large effect on the time course of the H2 concentration distribution.
Based on this information, we further simulated H2 behavior in the vessel containing the H2 leaked particle layer. By inserting multiple vent pipes without considering H2 generation distribution and particle properties in the particle layer, H2 accumulated from one pipe was discharged by buoyancy without depending on the H2 generation distribution and particle properties in the particle layer and air flowed in from the other pipe. It was suggested that such a natural ventilation process would reduce the H2 concentration in the container.