ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Samuel Durbin, Ramon Pulido, Philip Jones, Adrian Perales
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1672-1684
Research Article | doi.org/10.1080/00295450.2024.2302727
Articles are hosted by Taylor and Francis Online.
The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of a SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using relatively high helium backfill pressures (up to approximately 800 kPa) in the canister to enhance internal natural convection. This pressure differential offers a comparatively high driving potential for blowdown of any particulates that might be present in the canister in the event of a through-wall SCC.
In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of a SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gauge blocks with a linearly tapering slot orifice nominally 13 μm (0.0005 in.) tall on the upstream side and 25 μm (0.001 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.89 mm (0.350 in.) long (flow length). Surrogate aerosols of cerium oxide (CeO2) were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively.
The next iteration of testing involves replacing the engineered microchannel with lab-grown SCCs. Preliminary clean flow testing has been conducted on SCC samples provided by the Electric Power Research Institute. These data sets demonstrate a new capability to characterize SCCs under well-controlled boundary conditions. Preliminary testing efforts are focused on understanding the evolution in both the size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel cladding into the canister interior, and ultimately, through a SCC.