ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Sarah R. Suffield, Ben J. Jensen, Philip J. Jensen, William A. Perkins, Brady D. Hanson, Steven B. Ross, Christopher L. Grant, Casey J. Spitz
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1648-1657
Research Article | doi.org/10.1080/00295450.2023.2299892
Articles are hosted by Taylor and Francis Online.
This paper provides an overview of ongoing work aimed at developing spent nuclear fuel (SNF) canister deposition models. Currently, it is known that stainless steel canisters are susceptible to chloride-induced stress corrosion cracking (CISCC). However, the rate of CISCC degradation and the likelihood that it could lead to a through-wall crack is unknown. While it is currently unknown if there is a threshold chloride surface concentration for CISCC initiation, it can be assumed that the onset and progress of material degradation will depend on the local contaminant concentration, the properties of the contaminant species, and the synergistic effects when multiple contaminants are present.
This study uses well-developed computational fluid dynamics and particle tracking tools and applies them to SNF storage to determine the rate of deposition on canisters. Understanding the rate of deposition on SNF canisters could be important for making canister aging management predictions. This study is a part of an ongoing effort funded by the U.S. Department of Energy, Office of Nuclear Energy, Office of Spent Fuel and Waste Science and Technology, which is tasked with doing research relevant to enhancing the technical basis for ensuring the safe extended storage and subsequent transport of SNF.
This work is being presented to demonstrate a potentially useful technique for SNF canister vendors, utilities, regulators, and stakeholders to utilize and further develop for their own designs and site-specific studies.