ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
Anna d’Entremont, Rebecca Smith, Christoph Rirschl, Keith Waldrop, Darrell Dunn, Robert Einziger, Robert Sindelar
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1639-1647
Research Article | doi.org/10.1080/00295450.2023.2226519
Articles are hosted by Taylor and Francis Online.
A recently revised American Society for Testing and Materials consensus standard guide for drying of spent nuclear fuel (SNF) provides considerations and guidance for preparing SNF for its safe storage in a sealed dry storage system. The standard discusses (1) needs for drying, (2) techniques to dry, and (3) demonstration of adequate dryness. No specific approach is prescribed since the effective techniques and needs for drying depend on the specifics of the fuel and dry storage system. This paper discusses these topics using examples for both Zr-alloy-clad commercial SNF and for aluminum-alloy-clad research reactor SNF.
Residual water can include free water (liquid and/or vapor), physisorbed water bound to internal surfaces, and chemisorbed water incorporated into surface films, such as (oxy)hydroxides. The potential impacts of these residual waters are corrosion/oxidation, radiolytic breakdown into gaseous and/or reactive species, and canister pressurization.
For commercial SNF, inadvertent free water, even up to large amounts (e.g., 10+ mol), is not predicted to cause adverse corrosion degradation, except possible fuel oxidation for breached SNF. For aluminum-clad SNF, the production of radiolytic hydrogen with contribution from the chemisorbed water in its hydrated oxides is a primary consideration. For both SNF systems, canister pressurization is predicted to be well within the canister design, and flammability would not pose a safety concern using an oxygen limit of 5 vol % criterion. (Flammability control can be achieved by limiting either hydrogen or oxygen, and an oxygen limit is expected to be easier to meet in the presence of radiolytic H2 generation.)
The two primary technologies for SNF drying, vacuum drying and forced-gas dehydration, are described herein, and drying tests and campaigns using these methods are cited. Dryness criteria and the methods used to detect and measure residual (free) water are also discussed.