ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
C. W. Forsberg
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1623-1638
Research Article | doi.org/10.1080/00295450.2024.2337311
Articles are hosted by Taylor and Francis Online.
Most high-temperature reactors use graphite as a moderator and structural material. This includes high-temperature gas-cooled reactors with helium cooling and TRi-structural ISOtropic (TRISO) fuel particles embedded in graphite, as well as fluoride salt–cooled high-temperature reactors with clean salt coolant and TRISO fuel particles embedded in graphite and thermal spectrum molten salt reactors with a graphite moderator and fuel dissolved in the salt. The largest volume radioactive waste stream from these reactors is the irradiated graphite.
We describe herein a roadmap for management of these graphite wastes that contain radioactive 14C, tritium, and other radionuclides. There may be some graphite wastes with sufficiently low radioactivity levels that can be treated as nonradioactive waste and managed like other graphite waste. Management options for the graphite include (1) direct disposal, (2) recycled back to the reactor or other nuclear applications, and (3) oxidizing the graphite with release as an effluent or underground sequestration of the carbon dioxide. Cosequestration of this carbon dioxide with carbon dioxide from industrial, biological, and cement production processes can isotopically dilute the 14C before sequestration to eliminate the possibility of exceeding individual radiation exposure limits.
We also describe options for processing graphite-matrix TRISO fuel, including separating the bulk graphite to reduce the volumes of used fuel for disposal or processing to recover fissile materials. The inventories of radioactive isotopes in different carbon wastes vary by many orders of magnitude; thus, there is no single economic option for the management of all graphite waste.