ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
C. W. Forsberg
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1623-1638
Research Article | doi.org/10.1080/00295450.2024.2337311
Articles are hosted by Taylor and Francis Online.
Most high-temperature reactors use graphite as a moderator and structural material. This includes high-temperature gas-cooled reactors with helium cooling and TRi-structural ISOtropic (TRISO) fuel particles embedded in graphite, as well as fluoride salt–cooled high-temperature reactors with clean salt coolant and TRISO fuel particles embedded in graphite and thermal spectrum molten salt reactors with a graphite moderator and fuel dissolved in the salt. The largest volume radioactive waste stream from these reactors is the irradiated graphite.
We describe herein a roadmap for management of these graphite wastes that contain radioactive 14C, tritium, and other radionuclides. There may be some graphite wastes with sufficiently low radioactivity levels that can be treated as nonradioactive waste and managed like other graphite waste. Management options for the graphite include (1) direct disposal, (2) recycled back to the reactor or other nuclear applications, and (3) oxidizing the graphite with release as an effluent or underground sequestration of the carbon dioxide. Cosequestration of this carbon dioxide with carbon dioxide from industrial, biological, and cement production processes can isotopically dilute the 14C before sequestration to eliminate the possibility of exceeding individual radiation exposure limits.
We also describe options for processing graphite-matrix TRISO fuel, including separating the bulk graphite to reduce the volumes of used fuel for disposal or processing to recover fissile materials. The inventories of radioactive isotopes in different carbon wastes vary by many orders of magnitude; thus, there is no single economic option for the management of all graphite waste.