ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Liftoff report lifts the lid on cost and risk in push to nth-of-a-kind reactors
The Pathways to Commercial Liftoff: Advanced Nuclear report that was released in March 2023 by the Department of Energy called for five to 10 signed reactor contracts for at least one reactor design by 2025. Now, 18 months have passed, and despite the word “resurgence” in media reports on the U.S. nuclear power industry, 2025 is fast approaching with no contracts signed.
Milos I. Atz, Robert A. Joseph, Edward A. Hoffman
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1602-1622
Research Article | doi.org/10.1080/00295450.2023.2287307
Articles are hosted by Taylor and Francis Online.
Advanced nuclear reactors offer various operational advantages over existing light water reactors but could produce types of spent nuclear fuel (SNF) with a wide variety of forms and characteristics depending on how many different concepts are deployed. Each advanced reactor SNF type potentially poses unique management challenges. New planning efforts will be necessary to anticipate how the management requirements of advanced reactor SNF will affect the deployment of an integrated waste management system. This paper applies a framework of high-level facility deployment milestones to a generic SNF management system, reviewing them together with the advanced reactor SNF characteristics and management requirements. This allows for the investigation of factors that influence facility and system deployment, and ultimately, the identification of challenges facing the deployment of different kinds of SNF management facilities.
The back end of the once-through fuel cycle is examined for four advanced reactor system technology types: sodium-cooled fast reactors, high-temperature gas-cooled reactors, liquid-fuel molten salt reactors, and lead-cooled fast reactors. It is observed that milestones earlier in the facility deployment process (e.g., siting and facility design) are more impacted by the uniqueness of advanced reactor SNF characteristics than others (e.g., construction and testing). Ultimately, none of the differences are seen as fundamentally disqualifying in a technical sense; however, they should be considered early, potentially as part of reactor design, to avoid issues in the future.