ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Chaithanya Balumuru, Krishnan Raja, Piyush Sabharwall, Vivek Utgikar
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1593-1601
Research Article | doi.org/10.1080/00295450.2024.2329834
Articles are hosted by Taylor and Francis Online.
Laboratory-synthesized nanocarbon pelletized with titanosilicate (ETS-10) as a support matrix has been investigated for the capture of radioactive iodine present as methyl iodide (CH3I) in the off-gas streams produced during aqueous reprocessing of used nuclear fuel. The mass fraction of carbon in the sorbent matrix was 0.10. The effects of residence time and CH3I concentration were investigated using a continuous flow column setup to quantify the adsorption and desorption capacities of adsorbent under dynamic conditions from an air stream containing CH3I present at concentrations representative of those expected in the off-gas streams. Air with CH3I gas as a source in the column resulted in quantifiable CH3I adsorption with 0.98 mg/g of adsorption capacity. Laboratory-made nanocarbons had a larger adsorption capacity than those of the other carbons reported in the literature. Additionally, the adsorption capacity of nanocarbon on ETS-10 is compared to that of nanocarbon coated on cordierite in previous studies.