ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Teklu Hadgu, Edward Matteo, Thomas Dewers
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1567-1577
Research Article | doi.org/10.1080/00295450.2024.2304910
Articles are hosted by Taylor and Francis Online.
Disposal of commercial spent nuclear fuel in a geologic repository is studied. In situ heater experiments in underground research laboratories provide a realistic representation of subsurface behavior under disposal conditions. This study describes process model development and modeling analysis for a full-scale heater experiment in opalinus clay host rock. The results of thermal-hydrology simulation, solving coupled nonisothermal multiphase flow, and comparison with experimental data are presented. The modeling results closely match the experimental data.