ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Liftoff report lifts the lid on cost and risk in push to nth-of-a-kind reactors
The Pathways to Commercial Liftoff: Advanced Nuclear report that was released in March 2023 by the Department of Energy called for five to 10 signed reactor contracts for at least one reactor design by 2025. Now, 18 months have passed, and despite the word “resurgence” in media reports on the U.S. nuclear power industry, 2025 is fast approaching with no contracts signed.
Zhenze Li, Thanh Son Nguyen, Matthew Herod, Julie Brown, Hamed Mozafarishamsi
Nuclear Technology | Volume 210 | Number 9 | September 2024 | Pages 1535-1548
Research Article | doi.org/10.1080/00295450.2023.2240160
Articles are hosted by Taylor and Francis Online.
Natural analogues are systems that have evolved over geological timescales with features similar to one or several components of a deep geological repository (DGR). Natural analogues complement short-duration laboratory studies since they are existing reflections of many long-term processes that might affect the performance of a repository. Mathematical models are often used for the post-closure safety assessment of a DGR. Confidence in the models’ predictions is enhanced when the models successfully simulate the past evolution of a natural analogue. This paper summarizes the Canadian Nuclear Safety Commission’s (CNSC’s) recent research on natural analogues to inform on (1) glacial erosion, (2) engineered barrier system, and (3) uranium reactive transport in the context of DGRs for radioactive wastes. Glaciation and its erosion are prominent factors impacting the performance of future DGRs at high latitudes in the northern hemisphere. The authors have reviewed the field data from the Greenland Analogue Project, developed a conceptual and mathematical model for the simulation of the thermal conditions within the Greenland ice sheet, as well as the thermal-hydraulic conditions at its base and the ice sheet velocity, and eventually estimated the erosion rate at the site.
The Cigar Lake Analogue demonstrates the long-term radionuclide containment capability of the illite clay zone enveloping the ore body, serving as an analogy to the engineered clay barriers. The CNSC and University of Ottawa analyzed 129I in the Cigar Lake core samples, and modeled and correlated the diffusion-dominated transport of radionuclides over the geological evolution of the Cigar Lake deposit. The results provide information on the mobility of fission products and significant radionuclides in conditions analogous to the source, engineered barriers, and near-field host rock of a DGR.
The reactive transport and geochemistry of the Kiggavik-Andrew Lake uranium deposit mineralization and remobilization was another natural uranium deposit analogue studied by the CNSC. A reactive transport model was established according to the conceptualized geochemical processes and run under specified boundary and initial conditions to validate the geochemical processes. The geometry, timing, geochemistry, and fluid composition were used as model constraints.