ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Javiera Cervini-Silva
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1487-1495
Note | doi.org/10.1080/00295450.2023.2295152
Articles are hosted by Taylor and Francis Online.
Bentonites are natural reservoirs of various elements and are of interest because they are sources of thorium and uranium, which are transition elements that provide nuclear energy. The objective of this work was to study the plausible association(s) of these elements with other transition elements of interest. The contents of 18 transition elements (cerium, cobalt, chromium, copper, iron, hafnium, lanthanum, manganese, molybdenum, neodymium niobium, nickel, tantalum, thorium, uranium, vanadium, yttrium, zinc, and zirconium) in 38 bentonites determined experimentally by X-ray fluorescence spectroscopy (XRF) were analyzed.
The contents of the elements were plotted in (x,y) graphs and then fitted to polynomial functions (orders 1 through 6). According to the coefficient of determination (r2: 0.5 ≤ r2 strong, 0.3 ≤ r2 ≤ 0.5 medium, and r2 ≤ 0.3 weak), the contents of thorium, uranium, niobium, and nickel related strongly, thus the presence of niobium and nickel served to predict the presence of detectable concentrations of thorium and uranium. The equations showing higher r2 values were
1. {Th} = 1e-6{Nb}5 − 3e-4{Nb}4 + 1.9e-2{Nb}3 − 5.4e-1{Nb}2 + 7.3{Nb} − 6.3, r2 = 0.53.
2. {Th} = −3e-8{Nb}6 + 9e-6{Nb}5 − 1e-3{Nb}4 + 4.7e-2{Nb}3 − 1.1{Nb}2 + 11.5{Nb} − 16, r2 = 0.54.
3. {Th} = 5e-6{Ni}4 − 1.5e-3{Ni}3 − 1.5e-1{Ni}2 − 5.8{Ni} + 9e+1, r2 = 0.49.
4. {Th} = −7e-8{Ni}5 + 3e-5{Ni}4 − 5.1e-3{Ni}3 + 3.4e-1{Ni}2 − 9.5{Nb} + 1e+2, r2 = 0.56.
5. {Th} = 2e-9{Ni}6 − 8e-7{Ni}5 + 2e-4{Ni}4 − 1.5e-2{Ni}3 − 7e-1{Ni}2 − 1e+1{Ni} + 1e+1, r2 = 0.60.
6. {Th} = −1e-4{U}5 + 1.3e-2{U}4 − 4.3e-1{U}3 + 5.7e-1{U}2 − 2e+1{U} + 5e+1, r2 = 0.54.
7. {Th} = 6e-6{U}6 − 9e-4{U}5 + 4.5e-2{U}4 − 1.1{U}3 + 1e+1{U}2 − 5e+1{U} + 1e+2, r2 = 0.64.
8. {U} = 8e-6{Nb}4 − 1.2e-3{Nb}3 + 4.8e-2{Nb}2 − 4.3e-1{Nb} + 6.8, r2 = 0.48.
9. {U} = 2e-7{Nb}5 − 4e-5{Nb}4 + 2.8e-3{Nb}3 − 7.6e-2{Nb}2 + 1.1{Nb} + 1.9, r2 = 0.5.
10. {U} = 1e-8{Nb}6 − 3e-6{Nb}5 + 2e-4{Nb}4 − 8e-3{Nb}3 + 1.3e-1{Nb}2 − 5.4e-1{Nb} + 5.4, r2 = 0.51.
11. {U} = 1.8e-1{Th} + 2.6, r2 = 0.49; {U} = 1.7e-3{Th}2 − 2.9e-2{Th} + 6.3, r2 = 0.60.
12. {U} = 2e-5{Th}3 − 1.7e-3{Th}2 + 1.4e-1{Th} + 4.5, r2 = 0.58; {U} = −5e-7{Th}4 + 2e-4{Th}3 − 1.5e-2{Th}2 + 5.5e-1{Th} + 1.5, r2 = 0.6.
13. {U} = −7e-9{Th}5 + 2e-6{Th}4 − 1e-4{Th}3 − 3e-4{Th}2 + 2.7e-1{Th} + 2.9, r2 = 0.6.
14. {U} = 2e-9{Th}6 − 8e-7{Th}5 + 1e-4{Th}4 − 8.1e-3{Th}3 − 2.4e-1{Th}2 + 15, r2 = 0.65.
This study provided a joint experimental and theoretical approach to optimize the recovery of thorium and uranium and to save invaluable onsite and off-site natural resources and work time. The findings might expand on other studies reporting the quantification of transition metals on bentonite matrices. For instance, the concentrations of nickel reported in studies using bench techniques could serve as the basis to calculate the contents of thorium.