ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Zhiwei Zheng, Fabiola Guido Garcia, Jianan Liu, Shinya Nagasaki, Tammy (Tianxiao) Yang
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1475-1486
Research Article | doi.org/10.1080/00295450.2023.2300900
Articles are hosted by Taylor and Francis Online.
Uranium has been identified as an element of interest for the safety assessment of a deep geological repository for used nuclear fuel. This paper examines the sorption behavior of U(VI) onto MX-80 bentonite and granite in Ca-Na-Cl solutions of varying ionic strengths [0.05 to 3 mol/kgw (m)] and across a pH range of 4 to 10. U(VI) sorption on MX-80 showed that U(VI) sorption gradually increased with pHm until pHm = 6, where it reached its maximum, and decreased slightly with pHm until pHm = 8, and then became constant. U(VI) sorption on granite increased along with pHm, reached the maximum around pHm = 7 to 8, and then slightly decreased with pHm. Both MX-80 and granite showed essentially no ionic strength dependence for sorption of U(VI). A nonelectrostatic surface complexation model successfully predicted sorption of U(VI) onto MX-80 and granite using the formation of an inner-sphere surface complex. Optimized values of surface complexation reaction constants (log K0) for the formation reactions of these surface species are proposed.