ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Simon Chung, Martin Stewart, Andrew Grima, Peter Wypych, Sam Moricca
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1444-1463
Research Article | doi.org/10.1080/00295450.2023.2299894
Articles are hosted by Taylor and Francis Online.
In preliminary engineering studies and equipment commissioning, readily available simulants with certain resemblances to the target waste, such as particle size, may be employed. However, for the validation of engineering processes, it is crucial to use simulants that closely replicate the physical and flow characteristics of the waste material, typically excluding radioactivity. The production of such simulants can entail significant costs. To facilitate the development of novel engineering solutions, the U.S. Department of Energy provided a nonradioactive alumina calcine simulant. This simulant was utilized to demonstrate a hot isostatic press (HIP) canister-filling system designed by Gravitas Technologies in Australia. The simulant was synthesized through a fluidized-bed calcination process, which mirrored the chemistry and procedure employed for the actual alumina Idaho calcine waste material. Consequently, the simulant exhibited physical properties akin to the actual calcine, including particle size distribution, bulk density, and flow properties.
This first paper, Part 1, presents the powder characterization test results determined by a Freeman FT-4 rheometer and the calibration methods that determined a set of unique contact model parameters for dynamically simulating Idaho calcine simulant in a discrete element method (DEM) model. The second paper, Part 2, will present the dynamic simulations of two bulk material-handling scenarios in a full-scale, three-dimensional integrated HIP canister-filling system. The predicted results are compared with historical experimental results for validating the contact model. The contact model, which represents the particle-particle and particle-boundary interactions, was calibrated according to experimental data obtained from six calibration tests.
This work aims to support future research with powder characterization experimental data and a calibrated DEM contact model to assist in developing processes for the safe handling and treatment of Idaho calcine waste.