ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Lei Jin, Hui He, Yu Zhou, Hongguo Hou, Meng Zhang, Yang Gao
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1392-1413
Research Article | doi.org/10.1080/00295450.2023.2299081
Articles are hosted by Taylor and Francis Online.
For achieving high separation efficiency and a large throughput in the nuclear fuel reprocessing industry, it is crucial to have a profound understanding of the flooding characteristics in pulsed disc and doughnut extraction columns (PDDCs). For this purpose, the least absolute shrinkage and selection operator (LASSO) method was utilized to obtain predictive equations that provide high applicability and analytical convenience. The effects of three operating conditions (dispersed-phase velocity, continuous-phase velocity, and pulse intensity) on the hydrodynamic parameters (dispersed phase holdup, slip velocity, characteristic velocity, and flooding point) were studied in a Φ50 PDDC in the kerosene-water system.
The LASSO method was applied to select highly correlated features of the hydrodynamic parameters and to propose second-order prediction equations. The effectiveness of LASSO was also compared to the published correlations and traditional linear regression. The second-order-regression of LASSO produced more intuitive prediction equations with the mean relative error within 15%. The impact of each operating variable on the hydrodynamic parameters was quantitatively analyzed by calculating the partial derivatives of these prediction equations. The dispersed-phase flow rate predominantly affects the holdup within the operating conditions. Pulse intensity emerges as the primary factor affecting slip velocity, characteristic velocity, and flooding throughput.