ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Charles Forsberg, Andrew Kadak
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1354-1365
Research Article | doi.org/10.1080/00295450.2023.2298157
Articles are hosted by Taylor and Francis Online.
Several high-temperature thermal neutron–spectrum pebble bed reactors are being commercialized. China has started up two helium-cooled pebble bed high-temperature reactors. In the United States, the X-Energy helium-cooled and the Kairos Power salt-cooled pebble bed high-temperature reactors will produce spent nuclear fuel (SNF) with burnups exceeding 150 000 MWd per tonne. The reactor fuel in each case consists of small spherical graphite pebbles (4 to 6 cm in diameter) containing thousands of small TRISO (microspheric tri-structural isotropic) fuel particles embedded in the fuel of zone these pebbles.
The unique isotopic, chemical, and physical characteristics of this high-burnup SNF create a technical case to eliminate safeguards based on the low risk for use in nuclear weapons, while maintaining safeguards in terms of risk for use in radiological weapons. These safeguards could be reduced to the simple counting and monitoring of pebbles in storage. Alternatively, there is the option to create a special category with reduced requirements for this SNF in storage, transport, and disposal. No safeguards would be required for a repository with only this type of SNF. Reactor safeguards are required for fresh fuel, partly burnt fuel, and to identify unconventional pebbles with depleted uranium or other materials that might be used to create weapons-useable materials.