ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Charles Forsberg, Andrew Kadak
Nuclear Technology | Volume 210 | Number 8 | August 2024 | Pages 1354-1365
Research Article | doi.org/10.1080/00295450.2023.2298157
Articles are hosted by Taylor and Francis Online.
Several high-temperature thermal neutron–spectrum pebble bed reactors are being commercialized. China has started up two helium-cooled pebble bed high-temperature reactors. In the United States, the X-Energy helium-cooled and the Kairos Power salt-cooled pebble bed high-temperature reactors will produce spent nuclear fuel (SNF) with burnups exceeding 150 000 MWd per tonne. The reactor fuel in each case consists of small spherical graphite pebbles (4 to 6 cm in diameter) containing thousands of small TRISO (microspheric tri-structural isotropic) fuel particles embedded in the fuel of zone these pebbles.
The unique isotopic, chemical, and physical characteristics of this high-burnup SNF create a technical case to eliminate safeguards based on the low risk for use in nuclear weapons, while maintaining safeguards in terms of risk for use in radiological weapons. These safeguards could be reduced to the simple counting and monitoring of pebbles in storage. Alternatively, there is the option to create a special category with reduced requirements for this SNF in storage, transport, and disposal. No safeguards would be required for a repository with only this type of SNF. Reactor safeguards are required for fresh fuel, partly burnt fuel, and to identify unconventional pebbles with depleted uranium or other materials that might be used to create weapons-useable materials.