ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The D&D of SM-1A
With the recent mobilization at the site of the former SM-1A nuclear power plant at Fort Greely, Alaska, the Radiological Health Physics Regional Center of Expertise, located at the U.S. Army Corps of Engineers’ Baltimore District, began its work toward the decommissioning and dismantlement of its third nuclear power plant, this time located just 175 miles south of the Arctic Circle.
John Acierno, Elia Merzari, Logan Burnett, Yue Jin, Emilio Baglietto, Hangbok Choi
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1223-1244
Research Article | doi.org/10.1080/00295450.2024.2337367
Articles are hosted by Taylor and Francis Online.
This paper presents the development of a benchmark for predicting thermal striping through simulation. This work utilized large eddy simulation and will be used to benchmark future models. The testing domain was created using both the STRUCT and the Reynolds-averaged Navier-Stokes turbulence models and is based on an earlier design of the General Atomics Fast Modular Reactor upper plenum. The plenum features two adjacent, identical hexagonal bundles each with a center-placed axial rod drive, with a hot left coolant stream and a cold right coolant stream. The simulation solves the nondimensional Navier-Stokes equations, with temperature accounted as a passive scalar. First- and second-order flow statistics were obtained after 600 convective time units of averaging. The first-order statistics reveal that the hot jet is damped by a recirculatory flow from the near wall. At the same location, the second-order statistics show strong oscillations both in velocity and temperature. The power spectral density was utilized to determine that a low-frequency oscillation occurs here that is within the range of interest for thermal striping. Furthermore, proper orthogonal decomposition was used to identify coherent structures that confirm the oscillatory behavior, indicative of thermal striping. Overall, this benchmark can aid in the development of future models for predicting thermal striping in nuclear reactors, potentially leading to improved reactor safety and performance.