ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
John Acierno, Elia Merzari, Logan Burnett, Yue Jin, Emilio Baglietto, Hangbok Choi
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1223-1244
Research Article | doi.org/10.1080/00295450.2024.2337367
Articles are hosted by Taylor and Francis Online.
This paper presents the development of a benchmark for predicting thermal striping through simulation. This work utilized large eddy simulation and will be used to benchmark future models. The testing domain was created using both the STRUCT and the Reynolds-averaged Navier-Stokes turbulence models and is based on an earlier design of the General Atomics Fast Modular Reactor upper plenum. The plenum features two adjacent, identical hexagonal bundles each with a center-placed axial rod drive, with a hot left coolant stream and a cold right coolant stream. The simulation solves the nondimensional Navier-Stokes equations, with temperature accounted as a passive scalar. First- and second-order flow statistics were obtained after 600 convective time units of averaging. The first-order statistics reveal that the hot jet is damped by a recirculatory flow from the near wall. At the same location, the second-order statistics show strong oscillations both in velocity and temperature. The power spectral density was utilized to determine that a low-frequency oscillation occurs here that is within the range of interest for thermal striping. Furthermore, proper orthogonal decomposition was used to identify coherent structures that confirm the oscillatory behavior, indicative of thermal striping. Overall, this benchmark can aid in the development of future models for predicting thermal striping in nuclear reactors, potentially leading to improved reactor safety and performance.