ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Wayne Strasser, Robert Kacinski, Daniel Wilson, Victor Petrov, Annalisa Manera
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1185-1211
Research Article | doi.org/10.1080/00295450.2023.2238156
Articles are hosted by Taylor and Francis Online.
Hybrid Reynolds-Averaged Navier-Stokes–Large Eddy Simulation was used to reveal detailed flow information and timescales in an isothermal reactor cavity cooling system plenum four-jet configuration. Plenum asymmetry and nonuniformity work together to cause premature jet merging. Bulk stirring in the plenum causes lateral jet vortex shedding, strong jet-jet interactions, swirl, and premature confluence. Two dominant transient modes exist: a jet flow timescale and then a plenum circulation timescale that is nearly three orders of magnitude larger. A primary consequence is that frequencies far less than the presumed 10 Hz threshold for thermal striping are pervasive. A second result is that scale-resolved computational fluid dynamics (CFD) models (as well as experimental rigs) need hundreds of seconds of statistically stationary flow time (tens of thousands of jet timescales) to produce stationary time averages. Fluid typically arrives at positions on the laser sheet in less time than it spends at those positions fluctuating in the streamwise and lateral directions. Also, a previously undocumented, but experimentally confirmed, vortex trap was identified via CFD. Finally, two-point velocity correlation analyses demonstrated a few dozen strong correlations across positions on the laser sheet. Expected close-proximity correlations emerged, but others across larger spaces also were connected. Most of these correlated at timescales close to that of the jet.