ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Lisa Marshall discusses the future of nuclear education
ANS President Lisa Marshall recently sat down with Phil Zeringue, vice president of strategic partnerships at Nuclearn.ai to talk about the evolving state of education in the nuclear world.
Ralph Wiser, Emilio Baglietto
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1143-1166
Research Article | doi.org/10.1080/00295450.2023.2202802
Articles are hosted by Taylor and Francis Online.
Turbulent heat transfer in buoyancy-dominated flows is a challenging problem for computational fluid dynamics (CFD). Many authors attribute model error in these conditions to the Reynolds analogy. We leverage a brand-new direct numerical simulation database to evaluate the performance of several popular turbulence models in buoyant diabatic channel flow. We find that heat transfer results are relatively accurate, with a Nusselt number error less than 20%. However, the turbulent flow solution is very inaccurate, with wall shear overpredicted by up to 100%. This indicates significant turbulence model error in such flows. We determined that the dominant sources of model error are missing physics in the algebraic Reynolds stress framework and the simple buoyancy production term used in industrial CFD. We suggest that future modeling efforts focus on these two sources of model error. We demonstrate that the Reynolds analogy is not the dominant source of model error.