ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Tri Nguyen, Elia Merzari, Cheng-Kai Tai, Igor A. Bolotnov, Brian Jackson
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1119-1142
Research Article | doi.org/10.1080/00295450.2023.2223036
Articles are hosted by Taylor and Francis Online.
Developing heat transfer correlations for buoyancy-driven flows and mixed convection is challenging, especially if the fluid’s Prandtl (Pr) number is not close to 1. For advanced nuclear reactor (Generation IV) designs, the downcomer plays a crucial role in normal operation and loss-of-power scenarios. The fluid-flow behavior in the downcomer can involve forced, mixed, or natural convection. Characterizing the heat transfer for these changing regimes is a serious challenge, especially in the heat transfer deterioration region. In this paper, the downcomer is simplified to heated parallel plates. The high–Pr number fluid FLiBe (a mixture of lithium fluoride and beryllium fluoride) is considered for all simulations. Direct numerical simulations using the graphics processing unit–based spectral element code NekRS are performed for a wide range of the Richardson number, from 0 to 400, at two different FLiBe Pr numbers (12 and 24). This results in an unprecedented 74 cases in total. Each case’s Nusselt number is calculated to evaluate existing heat transfer correlations.
Moreover, we propose several new modifications for cases without satisfactory choice. As a result, several novel mixed-convection heat transfer correlations have been built for high–Pr number fluids. The correlations are expressed as a function of the buoyancy number, covering several mixed-convection regimes. The Pr number effect on the Nusselt number behavior is also analyzed in detail. We also propose a novel method to evaluate the heat transfer deterioration region. Modified Reynolds-Gnielinski forced-convection correlations are defined for the laminarization region, and a free-convection correlation is used for the natural-convection-dominated region. These correlations can describe well the trend in the heat transfer–deficient region.