ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a roaring start in Atlanta, Ga., Tuesday morning with an opening plenary that was a live highlight reel discussing the latest industry achievements.
Starting with a lively promo video that left the audience amped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
Tri Nguyen, Elia Merzari, Cheng-Kai Tai, Igor A. Bolotnov, Brian Jackson
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1119-1142
Research Article | doi.org/10.1080/00295450.2023.2223036
Articles are hosted by Taylor and Francis Online.
Developing heat transfer correlations for buoyancy-driven flows and mixed convection is challenging, especially if the fluid’s Prandtl (Pr) number is not close to 1. For advanced nuclear reactor (Generation IV) designs, the downcomer plays a crucial role in normal operation and loss-of-power scenarios. The fluid-flow behavior in the downcomer can involve forced, mixed, or natural convection. Characterizing the heat transfer for these changing regimes is a serious challenge, especially in the heat transfer deterioration region. In this paper, the downcomer is simplified to heated parallel plates. The high–Pr number fluid FLiBe (a mixture of lithium fluoride and beryllium fluoride) is considered for all simulations. Direct numerical simulations using the graphics processing unit–based spectral element code NekRS are performed for a wide range of the Richardson number, from 0 to 400, at two different FLiBe Pr numbers (12 and 24). This results in an unprecedented 74 cases in total. Each case’s Nusselt number is calculated to evaluate existing heat transfer correlations.
Moreover, we propose several new modifications for cases without satisfactory choice. As a result, several novel mixed-convection heat transfer correlations have been built for high–Pr number fluids. The correlations are expressed as a function of the buoyancy number, covering several mixed-convection regimes. The Pr number effect on the Nusselt number behavior is also analyzed in detail. We also propose a novel method to evaluate the heat transfer deterioration region. Modified Reynolds-Gnielinski forced-convection correlations are defined for the laminarization region, and a free-convection correlation is used for the natural-convection-dominated region. These correlations can describe well the trend in the heat transfer–deficient region.