ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Cheng-Kai Tai, Tri Nguyen, Arsen S. Iskhakov, Elia Merzari, Nam T. Dinh, Igor A. Bolotnov
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1097-1118
Research Article | doi.org/10.1080/00295450.2023.2213286
Articles are hosted by Taylor and Francis Online.
Mixed convection of low and unitary Prandtl fluids in a vertical passage is fundamental to passive heat removal in liquid metal and gas-cooled advanced reactor designs. Capturing the influence of buoyancy in flow and heat transfer in engineering analysis is hence a cornerstone to the safety of the next-generation reactor. However, accurate prediction of the mixed convection phenomenon has eluded current turbulence and heat transfer modeling approaches, yet further development and validation of modeling methods is limited by a scarcity of high-fidelity data pertaining to reactor heat transfer. In this work, a series of direct numerical simulations was conducted to investigate the influence of buoyancy on descending flow of liquid sodium, lead, and unitary Prandtl fluid in a differentially heated channel that represents the reactor downcomer region. From time-averaged statistics, flow-opposing/aiding buoyant plumes near the heated/cooled wall distort the mean velocity distribution, which gives rise to promotion/suppression of turbulence intensity and modification of turbulent shear stress and heat flux distribution. Frequency analysis of time series also suggests the existence of large-scale convective and thermal structures rising from the heated wall. As a general trend, fluids of lower Prandtl number were found to be more susceptible to the buoyancy effect due to stronger differential buoyancy across the channel. On the other hand, the effectiveness of convective heat transfer of the three studied fluids showed a distinct trend against the influence of buoyancy. Physical reasoning on observation of the Nusselt number trend is also discussed.