ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Addis Lemessa Jembere, Tomasz Jakubowski
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 1042-1053
Research Article | doi.org/10.1080/00295450.2023.2291254
Articles are hosted by Taylor and Francis Online.
The relationship between various characteristics of postharvest vegetables and their corresponding biological surface properties is strongly interconnected, leading to a broad spectrum of properties after irradiation. The primary objective of the present study was to investigate how different doses of Ultraviolet-C (UV-C) radiation affect the mechanical properties of semifinished potato tubers derived from distinct Polish varieties, namely, Innovator, Fineziya, and Victoria. A low UV-C dose ranging from 0 to 30 mJ/cm2 was administered. The Innovator variety, when subjected to irradiation, exhibited the highest levels of compression force, cutting force, and bending force. Additionally, the irradiated samples demonstrated improved resistance to compression force, bending force, and increased weight compared to the control samples. Conversely, the control samples exhibited higher resistance to cutting load than the irradiated ones in all varieties. The analysis of variance confirmed a significant difference in compression, cutting force, and tuber weight among the treatment samples in all varieties. Furthermore, stress-strain analyses were performed and showed an elastic behavior of the Victoria variety and a higher Young’s modulus for the Innovator variety.