ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
On North Carolina's ratification of Senate Bill 266
I have been a North Carolinian for 62 years and involved in the state’s nuclear energy industry from my high school days to today. I have seen firsthand how North Carolina has flourished. This growth has been due to the state’s enterprising people and strong leaders. Clean, competitive, and always-on nuclear power has also played an important role.
Alvin J. H. Lee, Lucas Wodrich, Dimitri Kalinichenko, Caleb S. Brooks, Tomasz Kozlowski
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 1027-1041
Research Article | doi.org/10.1080/00295450.2023.2276999
Articles are hosted by Taylor and Francis Online.
The potential deployment of microreactors as a zero-emission source for critical applications within integrated energy systems such as microgrids has been gaining interest in recent years owing to the microreactors’ dispatchable nature, modular design, small site footprint, and carbon-free generation. A particularly high-value but challenging application with rapidly growing demand is in the deployment of high-performance computing (HPC) clusters within microgrids. In this work, a model of a HPC cluster in an energy-diverse microgrid is developed to determine the requirements of a technology-agnostic microreactor deployed for such a challenging application. The minute-resolution simulations revealed that the cluster’s electrical load fluctuation of up to 4.1 MW/min required a fast and responsive load-following capability. When the load-following capability of the microreactor was perturbed, the required microgrid storage capacity associated with having a 0.1 MW/min dispatchable microreactor decreased by two orders of magnitude as compared with load-following solely by energy storage devices, indicating that load-following capability in microreactors is of great value in such applications. The analysis methods described in this work can be extended to other microgrids, other HPC clusters, or other types of challenging applications, and can help microgrid planners in determining the storage size, output capacity, and ramping capabilities of the storage devices required for a given microgrid configuration.