ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Melissa Moreno, Danielle Redhouse, Christopher Perfetti
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 1015-1026
Research Article | doi.org/10.1080/00295450.2023.2274168
Articles are hosted by Taylor and Francis Online.
The Annular Core Research Reactor (ACRR) Monte Carlo N-Particle (MCNP) model is used by ACRR reactor operators and experiment designers at Sandia National Laboratories for a variety of computational calculations ranging from reactor kinetics parameter estimates and safety analyses to experimental planning. To understand the dominant source of uncertainty within the MCNP model, perturbations in temperature were applied to individual ACRR MCNP fuel rods. Fuel rod temperatures were randomly sampled from a uniform distribution from operational temperatures to quantify temperature-related uncertainty effects. Stochastic mixing was used to blend the cross sections of the desired temperatures using the MCNP continuous and Thermal Neutron Scattering Treatment [S(α,β)] libraries in ENDF/B-VII.1. This uncertainty analysis produced a 640 row × 640 column correlation and covariance matrix of the neutron energy spectra. Positive covariance was produced around the 1-MeV region and the 0.2-eV region. Correlation was found in the thermal and fast energy regions, but no correlation was observed in the slowing-down energy region because interactions in this region are not dominated by fuel.