ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Los Alamos researchers test TRISO transportation
Los Alamos National Laboratory recently performed a series of customized criticality experiments to obtain data that will support the transportation of HALEU TRISO fuel, the Department of Energy announced April 21.
Takashi Kodama, Hiroshi Kinuhata, Mikio Kumagai, Kazunori Suzuki, Shin-Itiro Hayashi, Shingo Matsuoka
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 958-984
Research Article | doi.org/10.1080/00295450.2023.2273550
Articles are hosted by Taylor and Francis Online.
Using the amount, composition, and decay power density of high-level liquid waste in a storage tank, the temperature change of the waste up to 600°C and the corresponding vapor and gas release rates of H2O, HNO3, NO2, NO, and O2 as a function of time after the loss of cooling function were obtained by the following method. The heat balance equations in and around the tank were derived, and the solution of the waste temperature change was numerically obtained using the vaporization rates of H2O and HNO3 and the generation rate of NOx, which were both obtained from the experiments using the simulated liquid waste. Utilizing the temperature versus time curve obtained from the equation, the release rates of the components described above were obtained as a function of time. This information on the progress of the accident can be used to study the Leak Path Factor of radioactive materials, especially of volatilized Ru, and further, it becomes basic information when considering accident management and suppressing the impact of a disaster.