ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Takashi Kodama, Hiroshi Kinuhata, Mikio Kumagai, Kazunori Suzuki, Shin-Itiro Hayashi, Shingo Matsuoka
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 958-984
Research Article | doi.org/10.1080/00295450.2023.2273550
Articles are hosted by Taylor and Francis Online.
Using the amount, composition, and decay power density of high-level liquid waste in a storage tank, the temperature change of the waste up to 600°C and the corresponding vapor and gas release rates of H2O, HNO3, NO2, NO, and O2 as a function of time after the loss of cooling function were obtained by the following method. The heat balance equations in and around the tank were derived, and the solution of the waste temperature change was numerically obtained using the vaporization rates of H2O and HNO3 and the generation rate of NOx, which were both obtained from the experiments using the simulated liquid waste. Utilizing the temperature versus time curve obtained from the equation, the release rates of the components described above were obtained as a function of time. This information on the progress of the accident can be used to study the Leak Path Factor of radioactive materials, especially of volatilized Ru, and further, it becomes basic information when considering accident management and suppressing the impact of a disaster.