ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
Ryo Yokoyama, Masahiro Kondo, Shunichi Suzuki, Christophe Journeau, Marco Pellegrini, Koji Okamoto
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 884-905
Research Article | doi.org/10.1080/00295450.2023.2262255
Articles are hosted by Taylor and Francis Online.
Accomplishing the retrieval of fuel debris from Fukushima Daiichi Nuclear Power Plant (1F) Unit 3 (1F3) requires an understanding of its distribution. In this study, we performed real-scale corium spreading and sedimentation behavior analyses using Lagrangian moving particle hydrodynamics and large eddy simulation methods. These methods allowed us to calculate the spreading of corium with various shear viscosities under water conditions and to propose the best estimation for the fuel debris distribution in 1F3. To minimize uncertainties arising from unknown boundary conditions, we investigated relevant parameters through literature review. Our analyses showed that highly viscous corium tends to pile up within the pedestal region under strong convective vapor and boiling heat transfer, while low-viscosity corium spreads to the outside of the pedestal regions regardless of cooling efficiency. We identified three cooling modes based on initial shear viscosity and cooling efficiency and predicted the fuel debris distribution in 1F3 by comparing our results to those of the Tokyo Electric Power Company (TEPCO) and Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) project. The distribution estimation of highly viscous corium derived from oxidic corium is consistent with the three-dimensional reconstructed image by TEPCO and the calculated results by the OECD/NEA BSAF project.