ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a roaring start in Atlanta, Ga., Tuesday morning with an opening plenary that was a live highlight reel discussing the latest industry achievements.
Starting with a lively promo video that left the audience amped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
Ryo Yokoyama, Masahiro Kondo, Shunichi Suzuki, Christophe Journeau, Marco Pellegrini, Koji Okamoto
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 884-905
Research Article | doi.org/10.1080/00295450.2023.2262255
Articles are hosted by Taylor and Francis Online.
Accomplishing the retrieval of fuel debris from Fukushima Daiichi Nuclear Power Plant (1F) Unit 3 (1F3) requires an understanding of its distribution. In this study, we performed real-scale corium spreading and sedimentation behavior analyses using Lagrangian moving particle hydrodynamics and large eddy simulation methods. These methods allowed us to calculate the spreading of corium with various shear viscosities under water conditions and to propose the best estimation for the fuel debris distribution in 1F3. To minimize uncertainties arising from unknown boundary conditions, we investigated relevant parameters through literature review. Our analyses showed that highly viscous corium tends to pile up within the pedestal region under strong convective vapor and boiling heat transfer, while low-viscosity corium spreads to the outside of the pedestal regions regardless of cooling efficiency. We identified three cooling modes based on initial shear viscosity and cooling efficiency and predicted the fuel debris distribution in 1F3 by comparing our results to those of the Tokyo Electric Power Company (TEPCO) and Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) project. The distribution estimation of highly viscous corium derived from oxidic corium is consistent with the three-dimensional reconstructed image by TEPCO and the calculated results by the OECD/NEA BSAF project.