ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Los Alamos researchers test TRISO transportation
Los Alamos National Laboratory recently performed a series of customized criticality experiments to obtain data that will support the transportation of HALEU TRISO fuel, the Department of Energy announced April 21.
Elham Gharibshahi, Miltos Alamaniotis
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 868-883
Research Article | doi.org/10.1080/00295450.2023.2254168
Articles are hosted by Taylor and Francis Online.
Nuclear terrorism resulting from the illicit trafficking of nuclear and radioactive materials consists of a serious threat against the security of countries. Hence, the transportation of hidden nuclear materials in large-scale cargos has emerged as an important public issue that requires immediate attention. The security architecture should merge the nuclear security systems and execute a procedure for the detection of nuclear and radioactive materials. In this regard, the detection of special nuclear materials (SNMs) in liquid-filled cargo containers is an essential matter of homeland security because of the difficulties imposed by liquids in performing efficient manual inspection. This paper presents a new artificial intelligence (AI) system implemented with fuzzy logic tools for detecting composite materials, including Pb-Th, Pb-U, and Pb-Co, in containers filled with water by utilizing optical signature information obtained with COMSOL. The developed AI system and its underlying method are validated for a scenario of detecting Pb-Th, Pb-U, and Pb-Co in water-filled containers.