ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Ryuji Yoshikawa, Yasutomo Imai, Norihiro Kikuchi, Masaaki Tanaka, Hiroyuki Ohshima
Nuclear Technology | Volume 210 | Number 5 | May 2024 | Pages 814-835
Research Article | doi.org/10.1080/00295450.2023.2249707
Articles are hosted by Taylor and Francis Online.
In the study of safety enhancements on advanced sodium-cooled fast reactors (SFRs) by the Japan Atomic Energy Agency (JAEA), it has been essential to clarify the thermal hydraulics under various operating conditions at high and low flow rate conditions in a fuel assembly (FA) with wire-wrapped fuel pins to assess the structural integrity of the fuel pin that achieves a high-performance core with high burnup ratio and high power density. A finite element thermal-hydraulic analysis code named SPIRAL has been developed by JAEA to analyze the detailed thermal-hydraulic phenomena in the FA of a SFR.
In this study, numerical simulations of 37-pin bundle sodium experiments at different Reynolds (Re) number conditions, including a transitional condition between laminar and turbulent flows and turbulent flow conditions, were performed to validate the developed hybrid k-ε/kθ-εθ turbulence model equipped in SPIRAL to consider the low Re number effect near the wall in the flow and temperature fields. The temperature distributions predicted by SPIRAL were consistent with those measured in the sodium experiments at the Re number conditions. Through the validation study, the applicability of the hybrid turbulence model in SPIRAL to the thermal-hydraulic evaluation of sodium-cooled FAs in a wide range of Re numbers was confirmed.